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Abstract—Data redundancy caused by correlation has motivated
the application of collaborative multimedia in-network processing
for data filtering and compression in wireless multimedia sensor
networks (WMSNs). This paper proposes an information theoretic
image compression framework with an objective to maximize
the overall compression of the visual information gathered in a
WMSN. The novelty of this framework relies on its independence
of specific image types and coding algorithms, thereby providing a
generic mechanism for image compression under different coding
solutions. The proposed framework consists of two components.
First, an entropy-based divergence measure (EDM) scheme is
proposed to predict the compression efficiency of performing joint
coding on the images collected by spatially correlated cameras.
The EDM only takes camera settings as inputs without requiring
statistics of real images. Utilizing the predicted results from EDM,
a distributed multi-cluster coding protocol (DMCP) is then pro-
posed to construct a compression-oriented coding hierarchy. The
DMCP aims to partition the entire network into a set of coding
clusters such that the global coding gain is maximized. Moreover,
in order to enhance decoding reliability at data sink, the DMCP
also guarantees that each sensor camera is covered by at least two
different coding clusters. Experiments on H.264 standards show
that the proposed EDM can effectively predict the joint coding
efficiency from multiple sources. Further simulations demonstrate
that the proposed compression framework can reduce 10%-23%
total coding rate compared with the individual coding scheme, i.e.,
each camera sensor compresses its own image independently.

Index Terms—Clustered coding, image compression, spatial cor-
relation, wireless multimedia sensor networks.

I. INTRODUCTION

IRELESS multimedia sensor network (WMSN) is an
W emerging networking paradigm that allows retrieving
video streams, still images, and generic sensing data from the
environment [4]. A WMSN promises a wide range of potential
applications such as multimedia surveillance, advanced health
care delivery, and industrial process control [4]. Different from
the conventional wireless sensor networks that deal with scalar
data, WMSNSs are required to deliver multimedia content with
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a certain level of quality-of-service (QoS). This characteristic
necessitates more sophisticated data compression strategies for
reducing the spectrum demand and saving the energy consump-
tion of the sensor nodes [4].

In a WMSN, a number of camera sensor nodes are deployed
in a field of interest with one or more data sinks located either
at the center or out of the field. The camera sensor nodes ob-
serve the phenomenon at different locations in the field and send
their observations to the sink(s). In general, the observations at
a camera are directly related to the camera’s field of view (FoV)
[7], and the spatially proximal cameras could have highly over-
lapped FoVs. As a result, the visual information retrieved from
adjacent camera nodes usually exhibits high levels of correla-
tion, which gives rise to considerable data redundancy in the
network.

Multimedia source coding [13], [18] is a common approach
to remove the redundancy of visual information. However, the
resource constraints of the sensor nodes bring new challenges
when applying source coding globally in the entire network.
The conventional video coding standards, such as MPEG/H.26x
[18], can achieve high compression performance. However,
they require extensive computation at the encoder, which places
heavy burden on the resource-constrained sensor nodes. In [19]
and [10], energy-efficient image compression is achieved by
distributing the workload of compressing an image over several
adjacent sensor nodes. Although promising for compressing
the images generated by a single node, these solutions do
not explore the correlation of the observed images among
adjacent sensors. In contrast, distributed source coding, such
as Slepian-Wolf coding [15], only requires low-complexity
encoding and leaves the intensive computations at the decoder.
However, this coding strategy requires each sensor node to
have the knowledge of global correlation structure, which
would incur significant additional costs. For these reasons,
multimedia source coding is infeasible to be applied globally
in a large-scale network, despite its outstanding compression
gains.

In such a case, the clustered coding strategy provides an ef-
fective way to resolve the above dilemma. This strategy uses the
hierarchical concept where the entire network is divided into re-
gions. Each region corresponds to a coding cluster, in which a
group of camera sensors collaboratively perform data compres-
sion, according to different coding algorithms. In the case of
conventional coding standards, a powerful cluster head, such as
GARCIA robotic platform [4], can be placed within each cluster
to serve as a single encoder, which has all correlated multimedia
streams as inputs, thereby avoiding the computationally inten-
sive operations draining the limited sensor energy store. In con-
trast to the conventional coding schemes that require central-
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ized realization, distributed source coding allows each sensor
to encode its own data separately, assuming a priori knowl-
edge of local correlation structure in its own cluster [15]. Since
each cluster only covers a limited number of nodes, it is feasible
to acquire this correlation information without incurring much
extra cost. Therefore, the clustered coding strategy paves the
way for the practical application of multimedia source coding
in large-scale WMSNSs.

Despite the promising perspective of clustered coding
strategy, there are still many technical issues remaining to
be resolved to make this technique of practical application
for WMSNs. One of the major issues is how to obtain the
correlation characteristics among the images captured by
different sensors. Many existing solutions apply image pro-
cessing methods to estimate the correlation among images from
neighboring sensors, and based on the estimated results, col-
laborative image coding algorithms are proposed. For example,
in [16], a distributed image compression method is proposed
based on image registration using correspondence analysis. In
[20], a shape matching method is applied to exploit the spatial
correlation between images acquired from neighboring sensors.
However, image processing methods are generally application
dependent: different types of images will require different
processing schemes [9]. Thus, how to design solutions whose
applicability and flexibility would not be limited by the specific
applications is of paramount importance.

To solve the problems above, we propose an information the-
oretic data compression framework that maximizes the overall
compression of the visual information retrieved from a WMSN.
This framework consists of two components: 1) compression ef-
ficiency prediction and 2) coding hierarchy construction. Both
components are independent of the specific coding algorithms
and images types, thus providing a generic architecture that al-
lows users to freely customize the WMSN applications based
on them. The compression efficiency prediction aims to esti-
mate the compression gain from joint encoding of multiple cam-
eras before the actual images are captured. To achieve this, an
entropy-based divergence measure (EDM) scheme is proposed,
which only takes the camera settings as inputs without requiring
the statistics of real images. In the EDM, the overlapping pattern
of the FoVs of multiple cameras is first identified. Then, the cor-
relation degree among the observations from cameras with over-
lapped FoVs is obtained through a spatial correlation model.
Based on the correlation characteristics, a dependency graph-
based algorithm is designed to estimate the joint entropy of mul-
tiple cameras. This joint entropy effectively predicts the com-
pression performance for joint encoding of multiple cameras.

Using the results from EDM, the next problem is how to
establish a compression-oriented coding hierarchy, which can
achieve a substantial compression gain and decoding reliability.
This problem can be further formulated as an optimal coding
clustering (OCC) problem, which we define as: find a set of
coding clusters with the minimum total entropy, such that each
camera node is covered by at least two different clusters. The
minimization of total entropy guarantees that the global com-
pression gain is maximized, while the coverage requirement en-
sures that the impact of cluster failures on the decoding relia-
bility is mitigated. We prove that the OCC problem is NP-hard.
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Fig. 1. Field of views of multiple cameras.

As a heuristic solution, a fully distributed protocol, called dis-
tributed multi-cluster coding protocol (DMCP), is presented to
provide a In A approximation to the optimal solution, where A
is the maximum node degree in the network. Moreover, it is
shown that In A is the best achievable approximation ratio for
the OCC problem.

The rest of this paper is organized as follows. Section II math-
ematically formulates the problems in the proposed data com-
pression framework. In Section III, the EDM algorithm is intro-
duced to provide a valid assessment of joint coding performance
of multiple cameras. The DMCP for establishing the efficient
and robust coding hierarchy is proposed in Section I'V. The per-
formance of this framework is examined in Section V. Finally,
Section VI concludes this paper.

II. PROBLEM FORMULATION

A. Spatial Correlation of Visual Information

In a WMSN, multiple camera sensors are deployed to provide
multiple views, multiple resolutions, and enhanced observations
of the environment. As shown in Fig. 1, multiple cameras are
deployed in a field of interest, and the cameras’ field of views
(FoVs) overlap with each other. A camera can only observe the
objects within its FoV. The sensing process of a camera is char-
acterized by projection from a 3-D scene to a 2-D image. The
observed images from cameras with overlapped FoVs are cor-
related with each other. We define the correlation of observed
images caused by overlapped FoVs as spatial correlation in our
context. The spatial correlation of the observed images further
leads to data redundancy in WMSNSs.

For two arbitrary camera sensors C; and C}, with FoVs A;
and A, suppose at a same time, their observed images are X ;
and Xy, respectively. X; and X}, are correlated when .A; and
A; overlap with each other. We introduce a spatial correlation
coefficient p; , to quantify the degree of correlation between X ;
and X. This coefficient will be used as an important parameter
in the following problems.

B. Clustered Source Coding

To remove the redundancy for correlated cameras, a group of
camera sensors can form a cluster to collaboratively compress
their data. Consider a cluster consisting of a cluster head (CH)
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and N camera sensors, where each sensor ¢ produces image
X, which is encoded with rate R;. According to basic coding
theorems, we have the following observation.

Observation 1: The total coding rate of all nodes
within a cluster is lower bounded by the joint entropy
H(Xy,Xs,...,Xn) no matter if centralized or distributed
source coding is applied.

For centralized source coding, each member in a cluster
sends its raw or preprocessed data to the CH, while the CH acts
as a single encoder that takes all collected data as inputs. Ac-
cording to Shannon’s source coding theorem [6], each cluster
can generate a total rate lower-bounded by the joint entropy
H(Xl,X27 . 7XN)’ c.g.,

N
ZR’iZH(X17X27"'7XN) (1)

i=1

where the equality holds when an optimal encoder is used.

For distributed source coding (DSC), each node in a cluster
separately encodes its own data, and the CH only acts as a
relay node to forward the received data to data sink, where the
compressed data are jointly decoded. In this case, Slepian-Wolf
coding theorem [15] provides a conceptual basis for DSC and
establishes the rate region for the rate vector (Ry, Ra, ... Ry):

Y Ri> H(X(U)|X(U) YUC{L,2,---,N} (2
€U

where X (U) = {X;|j € U} and U® is the complementary set
of U.

Surprisingly, Slepian-Wolf coding theorem (2) indicates
that the sum of rates, Zf\;l R;, can achieve the joint entropy

H(X1,Xs5,--+,XnN), just as for joint encoding the sources
(X1,Xs, -+, Xn), despite separate encoders for them. There-
fore, a cluster with NV nodes can be optimally encoded with
H(X1,X5,---, Xn) bits no matter if centralized or distributed

source coding is applied.

C. Multi-Camera Entropy Estimation Problem

Joint entropy serves as a lower bound of the overall coding
rate of multiple sources for both centralized and distributed
source coding. If the joint entropy for a cluster of cameras
can be estimated, we will be able to predict the performance
of joint coding within the cluster. However, to estimate the
joint entropy of visual information from multiple cameras is a
challenging task. Because of the intrinsic complexity of visual
information, it is difficult to model the dependency charac-
teristics of visual sources, and moreover, it usually requires
expensive computation and communication costs.

Our objective is to estimate the joint entropy of multiple
cameras in WMSNs through low computation and commu-
nication costs. Given a cluster of cameras with observations
X1, Xs,--+, Xy, the joint entropy H (X, X, -+, Xn) will
be described as a function of the individual entropy (H (X;))
and field of view (A;) of each camera, and the correlation
coefficients between any two cameras (p; ;) in the cluster.
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D. Optimal Coding Clustering Problem

Since joint entropy provides a benchmark on the compres-
sion gain from joint encoding of multiple sources, we can uti-
lize a similar entropy-based concept, called cluster entropy, to
measure the collaborative compression gain within the scope
of a single coding cluster. The target of optimal coding clus-
tering can then be correspondingly interpreted as to select a set
of coding clusters according to their cluster entropies such that
total entropy of the entire network is minimized. We describe
two definitions involved in the discussion above.

Definition 1: A coding cluster is a finite set comprising a
camera sensor and all sensors within its transmission range.

Definition 2: For each coding cluster A, its cluster entropy
H(A) is equal to the joint entropy of all cameras in A.

Now, the OCC problem can be formally stated as:
given a network consisting of a finite set of camera sen-
sors ¥ = ej,e9,...e, and a set of n subsets of F,
S = {51,59,...5,}, where each set S; corresponds a
coding cluster with its entropy H(S;), the goal is to find a
collection C' from S of minimum total entropy ) 5 - H(Si),
such that each element e; is covered by at least two sets in C.

The minimization of total entropy guarantees that the max-
imum global compression gain is achieved, while the coverage
requirement ensures that the visual information encoded by each
camera has more chance to be successfully delivered to, and
properly decoded at data sink.

III. JOINT ENTROPY ESTIMATION

In this section, we propose a novel EDM scheme to estimate
the joint entropy of observations from multiple cameras. This
scheme only takes cameras’ settings as inputs without requiring
the knowledge of specific applications, thereby providing a
generic framework for prior evaluation of compression under
different coding solutions. Moreover, it induces little commu-
nication costs since camera nodes only need to exchange their
settings via short messages among their 1-hop neighbors, and
low complexity computations are required for joint entropy
estimation. The EDM scheme consists of the following two
components.

1) Area division for FoVs. Given a group of cameras, their
FoVs are divided into several regions, such that each region
is covered by the same set of cameras.

2) Joint entropy estimation for regions. For each region, a
dependency graph is constructed based on the correlation
among the cameras. The joint entropy of the region is then
estimated by traversing the dependency graph. Finally, the
total joint entropy for the group of cameras is the sum of
the entropies of all the regions.

A. Area Division for Overlapped Field of Views

A camera is a directional sensor with limited sensing range. It
can only observe the objects within its FoV. If a camera sensor
is deployed on a ground plane, we can use a simplified 2-D FoV
model [11] that models the shape of a camera’s FoV as a sector.
As shown in the left part of Fig. 1, a camera’s FoV is determined
by four parameters: O, R, 17, and o, where O is the location of
the center of the camera, R is the sensing radius, V is the sensing
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direction (the center line of sight of the camera’s FoV), and «
is the offset angle between the sensing direction and a radius of
the sector. An arbitrary point Oy is in the FoV of the camera if
it satisfies

|Oél| S R 3
e ©

where 6 is the angle between 00 and V.

Another key parameter for a camera’s sensing process (3-D
to 2-D projection) is the camera’s focal length (f). Both the
FoV parameters and the focal length could be estimated through
calibration methods for WMSN, e.g., [8].

We consider the case when N cameras (C,Co, - --,Cy) are
deployed on the ground plane and all the cameras are homoge-
neous, i.e., they have the same focal lengths (f), sensing radii
(R), and offset angles («). Denote the FoV of an individual
camera C; by A;(O;, R;, 1_/; «;), and the overall FoV for these
cameras by A (A= {A;,---, An}). The goal of area division
is to divide A into several regions (P, Py, - - -, Pyr), such that
each region belongs to the FoVs of the same set of cameras. As
shown in Fig. 1, the FoVs of the three cameras are divided into
six different regions.

We introduce a grid-based approach to divide the overall FoV
A into regions. As shown in Fig. 1, the overall FoV A is firstly
divided into small grids (G(k), K = 1,---, K). Then we can
check if a grid G(k) is in a camera’s FoV (A4,,,n =1,---  N)
as follows: we find the center point of the grid, and using the
condition in (3), we can tell if it is in the camera’s FoV; if this
center point is in the camera’s FoV, we regard that this grid is
in the camera’s FoV. (This approximation is valid as long as
the size of the grid is much smaller than the size of the FoV.)
After traversing all the grids in the overall FoV, regions could
be formed by grouping the grids that belong to the same set of
cameras.

B. Estimating the Joint Entropy of a Region

In this section, we introduce an algorithm to estimate the joint
entropy of a region. Denote the cameras that can observe region
P; by (Cy,---,Cy). For the kth camera CY,, denote its observed
visual information by X}, and denote its observation about this
region by X (P;). The amount of information of the region P;
is the joint entropy of the observations about this region from
the cameras (C1, - -+, Cy,), given by

H(P;) = H(X1(FP), -, Xa(P)) . )

Since there is no unified probability model for images and es-
timating the joint probability distribution of multiple sources re-
quires large bulk of computation, it is difficult to calculate joint
entropy in resource-constrained WMSNSs. (See [7] for details.)
In this paper, we introduce a novel approach to estimate joint
entropy based on the spatial correlation model [7] in our pre-
vious work. Our solution consists of three steps:

1) Estimate the individual entropy H (X (P;)) in (4);

2) Study the correlation characteristics among the individual
observations using the correlation model in [7];

3) With the results from 1) and 2), apply a dependency graph
based algorithm to estimate H (P;) in (4).
We explain these steps in details in the following paragraphs.
1) Individual Entropy Estimation: For an arbitrary camera
C', the entropy of its observed image X, is H(Xy). The en-
tropy of the observation X}, about the region P;, H(Xy(P;)),
can be estimated as

H(Xk) )
where S(P;) is the area of P; and S(Ay,) is the area of the FoV.
The entropy H(X},) is the total amount of information of Xy,
which is provided by the projections of all the 3-D points in
the FoV. As there is no prior knowledge about where a camera
is deployed or what type of scene is observed, it is assumed
that when all the 3-D points in the FoV are projected on the
camera’s image plane, each point provides the same amount
of information. Considering that the cameras are deployed on
a ground plane and a 2-D FoV model is used, the amount of
information that camera C}, contributes to P; is approximately
proportional to the area of P;, so we use the ratio S(P;)/S(Ax)
to estimate H (X (P;)) in (5).

This assumption works well when there are no large obsta-
cles in a camera’s FoV. A camera’s FoV might be reduced in
case of obstacles; therefore, when implementing the proposed
algorithm in practical applications, we might need to update the
camera’s FoV model to reflect the effect of obstacles.

There are many different models for images, and different
values of entropy may be obtained for the same image sources.
In our algorithm, we avoid calculating the exact values of en-
tropy of images. As we consider the case that all the camera
sensors in a WMSN are homogeneous, without loss of gener-
ality, we assume that the entropies of the single observed im-
ages are the same, denoted by H(X;) = H(-) (i=1,---,N).
All the joint entropy terms in our algorithm will be expressed as
relative values of H ().

2) Spatial Correlation Motivated Entropy Estimation: In our
earlier work, we proposed a novel spatial correlation model for
visual information in WMSNSs [7]. Given an area of interest and
two cameras that can observe it, a spatial correlation coefficient
was derived to quantify the degree of correlation between the
two cameras. For example, if we take region Py in Fig. 1 as the
area of interest, both camera C; and camera C5 can observe
it, with observations X7 (P,) and X5 (P,). We pick some refer-
ence vectors in region Py, and calculate the projections of these
reference vectors in C7 and C5 using the projection model of
cameras. By studying the correlation between the projected ref-
erence vectors on the two cameras, the spatial correlation coef-
ficient pq o can be calculated.

In general, for cameras C; and C); that can observe region P;,
with P; as the area of interest, a spatial correlation coefficient
between the observations of P; at C; and C, was derived as a
function as follows:
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where O; and Oy, are the two cameras’ locations, and ‘71 and 17;;
are their sensing directions. The spatial correlation coefficient
was designed as a normalized symmetric metric, i.e., it satisfies
Pik = Prjand 0 < pjp < 1.

More importantly, the spatial correlation coefficient was re-
lated to the estimation of joint entropy in [7]. We briefly intro-
duce the relevant results here.

To evaluate the dependency between two visual sources, an
entropy correlation coefficient (ECC) was introduced in [12].
The ECC for two visual sources A and B was defined as

2I(A; B)

R ()

)
Moreover, the joint entropy H (A, B) can be given as
1
H(A,B) = (1 — §ECC> (H(A)+ H(B)). (8)

By definition, the joint probability distribution of the two
sources is needed to estimate the joint entropy. Due to the com-
plexity of image contents and the difficulty in image modeling,
it is difficult to get an accurate estimation of the joint proba-
bility distribution [12]. Besides, camera sensors in a WMSN
must exchange their observed images to estimate the joint prob-
ability distribution, which introduces a lot of communication
burden in the network. In [7], it was found that the spatial corre-
lation coefficient (6) had the same intrinsic meaning as FCC'":
both ranging from 0 to 1 and denoting the degree of correlation
between two sources, while the spatial correlation coefficient
could be obtained through low computation and communica-
tion costs. Therefore, the EFC'C term in (8) was replaced by the
spatial correlation coefficient.

Consequently, for cameras C; and C}, that can observe region
P;, the joint entropy of the observations of P; at C; and C, was
estimated as

H ) Xu(P) ~ (1 o

X (H (X;(F)) + H (Xi(F))) )

where X ;(P;) is the observation of P; at camera C;, and Xy, (F;)
is the observation of P; at camera C. This equation indicates
that the amount of information gained from the observations
of two cameras depends on the correlation between them. The
more the two observations are correlated, the less joint entropy
can be gained from them together.

From (9), we can obtain the conditional entropy as follows:

H (X;(F)|X%(F;)) :H(Xj(Bi)7Xk(Pi)) — H (Xx(P;))
~ (1= B5) | (X,(P)

- MH(Xk(Pi))

5 (10)

where H(X;(P;)|X(P;)) is the entropy of X;(P;) with the
knowledge of X (F;).
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3) Dependency Graph-Based Joint Entropy Estimation:
Based on the correlation coefficient (6) and the conditional
entropy term (10), we propose a dependency graph-based
algorithm to estimate the joint entropy of a region.

We study a two cameras’ case first. Suppose there are
only two cameras (C7 and Cb) in a region P;. We can de-
pict their relationship using a dependency graph: Cy; — Cj.
The joint entropy of the observations from C; and C can
be calculated by traversing the dependency graph. The
source node C5 contributes the entropy of its observa-
tions, H(X2(P;)), and the node C; contributes the condi-
tional entropy with respect to Co, H(X1(FP;)|X2(F;)), so
the joint entropy is calculated by adding these two terms:
H(X1(P;), X2(Pi)) = H(X2(F)) + H(X1(F)|X2(F;)).
The dependency graph can also be constructed as C; — Cs,
from which we can get the same result of joint entropy.

The two cameras’ case can be extended to estimate the joint
entropy of more than two cameras. Generally, for an arbitrary
number of cameras, we construct a dependency graph to de-
scribe the dependency characteristics among them. Denote the
dependency graph by G(V, E), where V is a collection of cam-
eras, and F is a collection of directed edges that stand for depen-
dencies. Joint entropy of the region is calculated by traversing
all the nodes in the graph along the directed edges. The detailed
steps are described in Algorithm 1.

For a group of cameras (Cy, Cy, - - -, C,,) that can observe the
region P;, we can obtain a correlation matrix (pj,k)n*n based
on (6). To simplify the problem, we assume limited number of
dependencies: each camera is dependent on the camera that is
most correlated with it. For example, if camera C; is most cor-
related with camera CY,, we say that C; is dependent on C',, and
we can construct a directed edge starting from C}, and ending at
Cj: Cy — C;. Cj is said to be a direct successor of C,, and Cy,
is a direct predecessor of C;.

The dependency graph is designed to be a directed acyclic
graph with the following constraints: a camera is either a source
node (i.e., a node that has no predecessors) or a direct successor
of one of the other cameras; a dependency graph may have sev-
eral source nodes, but each node can have at most one direct
predecessor; and there should be no loops in the graph, e.g.,
Cr — C; and C; — C}, cannot exit in the same graph. These
properties could be guaranteed through the procedure of con-
structing the dependency graph (lines 5—12 in Algorithm 1). For
each node C}, if another node C; is most correlated with it, i.e.,
neighbor(C;) = k, the algorithm adds C, — C) into the graph
only when two conditions are met: 1) C; has no predecessors,
and 2) C} is not a predecessor of C, (line 7 in Algorithm 1). The
first condition guarantees that each node can have at most one
direct predecessor, and the second one guarantees that there are
no loops in the graph.

Given a dependency graph with the above features, the joint
entropy is estimated by traversing all the nodes in the graph and
adding the entropies of the nodes together, which corresponds
to lines 13—19 in Algorithm 1. A source node contributes its in-
dividual entropy to the joint entropy, while a non-source node
contributes its conditional entropy with respect to its direct pre-
decessor to the joint entropy.
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Algorithm 1: Dependency Graph-Based Entropy Estimation

1) P;: {C1,C5,...,C,} with correlation matrix (p; i )nxn-

2)for j = 1ton do
3) mneighbor(C;) = argmaz(p;r);
Rty

4) end for
5)for k = 1tondo
6) forj=1tonandj # k do

7) if neighbor(C;) = k and C; has no predecessors and
C; is not a predecessor of Cj, then

8) Add Cj, — Cj into the dependency graph;
9) Predecessor(Cj) = Cy;

10) end if

11) end for

12) end for

13)for j = 1 ton do

14)  if C; has no predecessor then

15) Add H(X;(P;)) to H(P;);

16) else if Predecessor(C;) = Cj, then

17) Add H(X;(P;)|Xx(F;)) (10) to H(F;);
18) end if

19) end for

20) return H(F;).

Since the FoVs for a group of cameras are divided into sev-
eral independent regions, the total joint entropy is the sum of
the entropies of all the regions. For a group of cameras with ob-
servations (X7, ..., Xy ), with their FoVs divided into regions
(Py,..., Py, the total joint entropy is given by

H(Xh---,XN):H(P1)+"'+H(PM) (11

where H(P;) (i = 1,---, M) is obtained by Algorithm 1.

To provide an overview of the whole EDM algorithm, we
illustrate the steps for estimating the joint entropy of the three
cameras in Fig. 1. The FoVs of the three cameras are divided
into six regions. We take the sixth region (Ps) as an example.
All the three cameras (C4,Cq,C3) can observe Ps. Suppose
we find from the geometry of the cameras’ FoVs that S(Pg) =
0.15(A;). The entropy of a single image is H(+), by applying
(5), the individual entropies about this region are H (X;(FPs)) =
0.1H(-) (i = 1,2, 3). Furthermore, from (6), we can obtain a
correlation matrix for FPg:

(Pjk)axs =

By applying Algorithm 1 on the correlation matrix, we
can obtain a dependency graph as C3 — C; — C(Ci.
Therefore, the joint entropy of region Pg is H(Ps) =
H(X3(Ps)) + H(Xao(FPs)|X3(Fs))+H(X1(Ps)| X2(Fs)),
where the conditional entropies can be calculated from
(10). For example, H(X2(Ps)|X3(FPs)) = (1 — (p2.3/2)) -
H(XZ(PG))_(/)2’3/2) . H(Xg(PG)) = 005H() In the same
way, we can obtain H (X (Ps)|X2(FPs)) = 0.09H (-). Thus, the
joint entropy of Pg is H(FPg) = 0.24H (-). After the entropy of
each region is calculated, the joint entropy of the three cameras
is calculated by H(X1, X2, X3) = H(Py) + -+ + H(FP).

The entire EDM algorithm can be run at each sensor node.
To estimate joint entropy, a node just need to acquire the FoV
parameters, locations, and sensing directions of its neighbors.
Therefore, it does not require expensive communication costs in
the network. The estimated joint entropy will serve as a criteria
for the DMCP protocol in the following section.

IV. DATA COMPRESSION USING CLUSTERED SOURCE CODING

Aftera WMSN is deployed in a field, we would like to select a
set of coding clusters to cover the entire network with maximum
compression ratio. Due to the distributed manner of WMSNs
and the changing environment, a centralized algorithm is not
suitable for use here. The coding cluster selection should only
depend on local information. In this section, we first formulate
the OCC problem as an integer program, and shows that the
OCC problem is NP hard. Accordingly, we propose a DMCP,
which is shown to achieve an approximation guarantee of In A.

A. Integer Program Formulation of OCC Problem

To formulate the OCC problem as an integer program, we
assign a variable zg for each set S € S, which is allowed 0/1
values. This variable will be set to 1 iff set S is selected for
the coding hierarchy. The objective function is the sum of the
entropy values of all selected coding clusters. The constraint is
that for each node e € E, we want at least two of the clusters
containing it to be selected:

MIN > H(S)xs

Ses
s.t Z rg>2, eekl
S:e€S
zs € {0,1}, SE€S. (12)

If we treat H(S) as the cost ¢(.S) associated with each coding
cluster S € S and let the second constraint be coverage re-
quirement for each node ¢ € E, the OCC problem can be re-
duced to the constrained set multicover (CSMC) problem. The
CSMC problem is NP-hard and the greedy algorithm is essen-
tially the best one can hope for [14]. In other words, the approx-
imation ratio In A achieved by the greedy algorithm is the best
one for the CSMC problem. Therefore, the greedy strategy ap-
plies naturally to our OCC problem: let us say that the node
e is uncovered if it occurs in fewer than two of the selected
coding clusters. In each iteration, the algorithm selects, from
the currently unselected clusters, the most compression-efficient
cluster, where the compression efficiency of a cluster is defined
to be the average entropy of the uncovered nodes it covers. The
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algorithm terminates when there are no more uncovered nodes,
e.g., each node has been included by two different clusters. The
pseudo-code of the above procedures is described in Algorithm
4 in the Appendix.

The greedy algorithm for the OCC problem can be computed
in O(n) rounds if a central controller (e.g., data sink) provides
the full information of the network topology along with the de-
tailed settings (e.g., sensing direction, sensing offset angle, and
sensing range) for each camera. However, in a large-scale dis-
tributed network like WMSN, the centralized operations have
limited flexibility and scalability. Moreover, the energy con-
straint of sensor nodes prohibits network-wide information ex-
change. Next, we will propose a distributed protocol that only
needs local information exchange to achieve global compres-
sion optimization.

B. Distributed Multi-Cluster Coding Protocol

After a WMSN is initially deployed, each camera node leads
its neighbors to constitute a candidate coding cluster. At this
time, each sensor node could be in one of the following four
states: black, grey, half grey, and white. We call sensor nodes
black if they are selected as the CH locaters. The CH locaters
will not serve as the normal CHs but indicate the coordinates
at which the future mobile or fixed CHs should be placed. We
call the nodes grey if they are covered by at least two black
nodes, and half grey if they are covered by exactly 1 black node.
A node stays in the white state if there exists no black node
within its 1-hop range. The half grey nodes and white nodes are
collectively referred to as uncovered nodes. We now describe
several useful definitions.

Definition 3: The neighbor set of a node is a set consisting of
the node itself and all nodes in its 1-hop range.

Definition 4: The serving set of anode is a set comprising the
uncovered nodes that are residing in its 1-hop range.

Definition 5: The coding effectiveness of anode is the average
entropy of all nodes in its serving set.

Definition 6: The CH counter of a node records the current
number of the black nodes among its 1-hop neighbors.

Algorithm 2: Distributed Multi-Cluster Coding Protocol

1) state(e) € {black, grey, hal f grey, white, uncovered}

2) state(e) «— white, send & receive state(e) and camera
settings

3) N. — {¢' : state(e') = white} U {e}

4) {Discover neighbor set N, }

5) counter(e) = 0 {Set CH counter}

6) while state(e) = uncovered do

7 Ue — {¢ € N, : state(e') = uncovered}
8) {Calculate serving set U, }

9) EC. «— H(N.)/|U.]|

10) {Calculate coding effectiveness EC,
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11) if ECe = minereUG {ECQ/} then

12) state(e) < black, and counter = 1

13) send COVERAGE msg

14) else

15) wait until the selection of a new black node times out
16) if no COVERAGE received then

17) state(e) remains

18) else if counter = 0 then

19) state(e) «— half grey, and counter(e) =1
20) else if counter = 1 then

21) state(e) «— grey, and counter(e) = 2

22) send & receive ADV msg containing state(e)
23) end if

24)  end if

25) end while
26) Process_Grey_Black()

Now, the proposed DMCP establishes a clustered coding
hierarchy as follows. Initially (lines 1-5 in Algorithm 2), no
black nodes exist in the network. Thus, every node is un-
covered. Nodes in the uncovered state send out their camera
settings to their neighboring nodes. After receiving the setting
information, an uncovered node discovers its serving set and
calculates its cluster entropy. Based on these information, an
uncovered node evaluates its coding effectiveness, which is sent
out along with the node state in an advertising (ADV) message
to its 2-hop neighbors.

A node in the uncovered (e.g., half grey or white) state
collects ADV messages and extracts the coding effectiveness
values from its 2-hop neighbors. If the node itself is the most
coding-effective node amongst its 2-hop neighbors, it becomes
a black node and sends COVERAGE messages to other uncov-
ered nodes within its 1-hop range (lines 11-13 in Algorithm
2). Otherwise, an uncovered node can encounter the following
scenarios: 1) if no COVERAGE message is received within
the predefined maximum duration of selecting a new black
node, the node remains uncovered, recalculates its coding
effectiveness, and sends out an ADV message (lines 16-17 in
Algorithm 2). 2) If a COVERAGE message is received, and its
CH counter is equal to zero, the node enters half grey state and
increments its CH counter by 1 (lines 18—19 in Algorithm 2).
3) If a COVERAGE message is received, and its CH counter
already reaches 1, the node becomes a grey node and sets the
CH counter to 2 (lines 20-21 in Algorithm 2). For the last two
cases, an ADV message containing the node state is sent out to
its immediate neighbors.

For a grey node, if the CH counters of all its neighbors already
reach 2, the node remains grey for the rest of cluster selection
procedure and becomes a cluster member in the end. Otherwise,
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the node sends out an ADV message containing its coding ef-
fectiveness and collects ADV messages from all the uncovered
nodes within its 2-hop range. If the node itself has the highest
coding effectiveness, it enters black state and sends out COV-
ERAGE messages to its uncovered neighbors (lines 5-6 in Al-
gorithm 3). Otherwise, if the maximum duration of generating
a new black node passes, and there still exist uncovered nodes
within its 1-hop range, the node remains grey (lines 8-10 in Al-
gorithm 3). A black finally becomes a CH locater until the value
of its CH counter reaches 2 on receiving a COVERAGE mes-
sage (lines 13—17 in Algorithm 3).

Algorithm 3: Process_Grey_Black()

1) U, — {e € N, : counter(e) < 2}
2) while |U.| < |N.| do
3) if state(e) = grey then

4) recalculate coding effectiveness EC.

5) if EC. = ming ey {EC.}

6) state(e) «— black, and send COVERAGE msg
7 else

8) wait until the new black selection times out

9) if |U.| < |N.| do

10) state(e) «— grey

11) end if

12) end if

13) else if state(e) = black then

14) wait until a COV ERAGUE is received

15) counter(e) = 2

16) send ADV msg containing state(e) and counter(e)
17) Node e becomes a CH locator

18) end if

19) end while

20) Node e becomes a cluster member

The above procedures are performed by all nodes until each
of them becomes either a CH locater or a cluster member. At the
end, there is no uncovered node in the network, and the estab-
lished clustered coding hierarchy covers the entire network. The
pseudo-code of the above procedures is described in Algorithm
2 and Algorithm 3.

C. Correctness and Complexity

Theorem 1: If the minimum node degree in a WSN is 2,
each node will be covered by at least two coding clusters when
DMCP terminates.

Proof: Assume when DMCP terminates, a node v does
not belong to any coding cluster or it is only covered by one

coding cluster. This implies that v stays in the uncovered state.
Thus, the condition in line 6 of Algorithm 2 is satisfied. Since
the minimum node degree of v is larger than 1, v has at least one
neighbor, say w. If u has higher coding efficiency than v, then
u becomes a black node and v is covered by the coding cluster
led by u. Otherwise, v enters black state, and thus v is covered
by the coding cluster led by itself. Both cases contradict the as-
sumption that v does not belong to any coding cluster. On the
other hand, if v is only covered by one cluster, this means that
either v itself or one of its neighbors is a black node. In this case,
v’s neighbor or v will become a CH. (i.e., the operations in lines
12-14 of Algorithm 2 or lines 5-6 of Algorithm 3 are executed).
This implies that v is covered by two clusters, thus contradicting
the assumption that v is only covered by one coding cluster. W

Theorem 2: The DMCP protocol has a worst-case processing
time complexity of O(N?) per node per round, where N is the
number of nodes in the network.

Proof: In Algorithms 2 and 3, the computational operations
include two parts: the estimation of the cluster entropy (line 9
of Algorithm 2 and line 4 of Algorithm 3) and the search of the
minimum average entropy (line 12 of Algorithm 2 and line 5 of
Algorithm 3). The first part is calculated by the EDM scheme
presented in Section III. As indicated in Algorithm 1, the EDM
has a time complexity of O(N2). The second part is realized by
binary tree sorting, which takes O(Nlog(N)) iterations. Thus,
in each round, DMCP protocol has a worst-case processing time
complexity of O(/N?) per node. [ |

Theorem 3: The DMCP terminates in O(N) rounds, where
N is the number of nodes in the network.

Proof: Given a network with /N sensor nodes, there exist
total N candidate coding clusters, each of which consists of a
sensor node and its neighboring nodes. As indicated in Algo-
rithm 2, in each round, at least one candidate coding cluster is
selected as the final coding cluster. Thus, the DMCP takes a time
in O(N) rounds in the worst case. ]

Theorem 4: The DMCP protocol has a worst-case message
exchange complexity of O(1) per node.

Proof: During the execution of Algorithm 2, an uncovered
(white or hal fgrey) node is silent until it sends notification
messages COVERAGE to become black node or sends the
joint messages ADV to become grey node. The number of
these COV EFRAGFE messages are strictly less than N, since
at most N nodes will enter black state. In addition, uncovered
nodes generate at most N ADV messages, since at least one
node will decide to be a CH. Besides uncovered nodes, during
the execution of Algorithm 3, black nodes and grey nodes
also send out ADV and COVERAGE messages. Specifi-
cally, black nodes broadcast at most N ADV messages to
advertise their final status, and grey nodes generate at most [V
COV ERAGFE messages to announce a status change from the
grey to the black. Hence, the number of messages exchanged
in the network is upper-bounded by 4N, i.e., O(N). [

Since the clustered coding hierarchy only needs to be con-
structed when the network is initially deployed in the field of
interest, thus, the linear time and message complexity of the pro-
posed protocol has trivial impact on the network performance,
compared with the significantly enhanced energy efficiency in-
duced by the established coding hierarchy. In addition, to reduce
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the computational delay, the protocol parameters, such as the
duration of each round, can be the properly adjusted. The pro-
posed framework can be implemented on a variety of camera
sensor platforms, which are equipped with a wide range of mi-
croprocessors including ARM7, AVR, and Atmel ATmegal28L
[5]. Generally, users are provided with the dedicated compilers
for the specific camera sensor platforms. To facilitate the cross
compiling on different hardware platforms, we believe that the
gcc compiler collection [1] can be a good choice because it is
available for most embedded platforms equipped with a variety
of microcontrollers.

D. Approximation Ratio

Theorem 5: The DMCP computes a In A approximation for
the optimal coding clustering problem.

Proof: According to DMCP, the cluster entropy of a node
is only related to camera settings of the nodes in its neighbor set,
and the neighbor set is only determined by the local topology;
the value of the cluster entropy will not change as the pro-
tocol proceeds. On the other hand, the cardinality of the serving
set, which is equal to the number of its uncovered neighboring
nodes, can be reduced as protocol proceeds since some uncov-
ered neighboring nodes could be included by some other clus-
ters. Thus, we conclude that the coding effectiveness of a non-
black node can only be reduced if the cardinality of its serving
set decreases.

Based on this conclusion, we can further show that the DMCP
is equivalent to the centralized greedy algorithm. According to
DMCEP, a non-black node v with the highest coding effective-
ness within its 2-hop neighborhood is eligible to become a black
node. The selection of other non-black nodes outside v’s 2-hop
range as black nodes will not affect v’s eligibility to enter the
black state because the status change of the nodes outside v’s
2-hop range cannot reduce v’s serving set cardinality, and ac-
cording to the conclusion above, v’s coding effectiveness re-
mains the same. Therefore, the DMCP chooses v as a black node
before any nodes within its 2-hop range. On the other hand, the
centralized greedy algorithm always selects the most compres-
sion efficient cluster, and v leading its neighbors represents the
most compression efficient cluster within its 2-hop range. There-
fore, the centralized approach will select the cluster led by v as
a final coding cluster as the algorithm proceeds. This means that
the DMCP obtains the same result as the centralized algorithm,
thus achieving the same In A approximation ratio as the central-
ized algorithm. [ |

As shown in Section IV-A, the OCC problem can be reduced
to CSMC problem, for which In A is the best approximation
ratio. Thus, we can conclude that no protocols perform better
than the proposed DMCP in terms of application factor.

E. Intercluster Connectivity

After the DMCP is performed, the selected CH locaters send
out messages to advertise their states and coordinates. Then,
some more powerful multimedia nodes, such as the GARCIA
robotic platform [4], can automatically move to or be manually
placed at these locations, and act as normal CHs. Since the CHs
are interconnected by multi-hop connections, the CHs should
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properly adjust their transmission range to maintain inter-cluster
connectivity. We address this problem by proving the following
theorem.

Theorem 6: In a WMSN with the minimum node degree 6 >
1, i.e., there is no isolated node in the network, any two CHs are
two hops away at most.

Proof: Since every node has at least one neighbor, each
cluster member belongs to at least two clusters after the DMCP
is performed. This means that each cluster member has two dif-
ferent CHs within its 1-hop range. Suppose a CH v can reach
the nearest CH w at least three hops away. Then, there exists
a cluster member u of the CH v in the path between v and w.
This implies that the CH w is at least 2-hops away from the
cluster member u. Therefore, u cannot be covered by the CH
w, and there has to be another CH, say z, within 1-hop range of
u to meet its coverage requirement. Now, the cluster member
has two CHs, v and z, within its immediate neighborhood. This
means that v and x are at most two hops away from each other,
which contradicts with the assumption that a CH v can reach the
nearest CH at least three hops away. |

Therefore, in order to maintain inter-cluster connectivity,
each CH only needs to adjust its transmission range to twice
the 1-hop distance.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed data compres-
sion framework through simulations. We first investigate the
effectiveness of the EDM scheme by comparing its predicted
results with the actual joint coding performance of practical
coding schemes. Then, we study the compression performance
of DMCP under changing network sizes and camera settings.

A. Validity of the EDM Predictions

For a cluster of N camera sensors with observations
X1,---, XN, the joint entropy H(X7,---, X ) is a theoretical
lower bound of the total coding rate for these cameras. To
predict the percentage of rate savings of joint coding, we define
an estimated joint coding efficiency as

H(X17 e 7X]V')
H(X1)+---+H(Xy)

ng=1- 13)

where H(X1) + --- + H(X ) corresponds to the total coding
rate needed when the cameras compress their observations
individually.

We verify the estimated joint coding efficiency using practical
video coding experiments. Similar as the definition above, we
introduce an actual joint coding efficiency as

R(X1, -, Xy)
=1- S 14
R R(X1)+ -+ R(Xn) (9
where R(X1,---,Xn) is the total rate from joint coding, and

R(X1)+---+ R(Xy) is the total rate from individual coding.

We consider an indoor scene and an outdoor scene as repre-
sentatives of various WMSN applications. We deploy 12 camera
nodes at different view points around each scene, and let each
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(a)

Fig. 2. (a) Indoor scene “Tables”. (b) Outdoor scene “Trees”.

TABLE I
EXPERIMENTAL PARAMETERS

H.264 Baseline | H.264 MVC
RD optimization on on

Entropy coding UVLC CABAC
Search range 128 pixels 128 pixels
Num of reference frames 1 1

camera capture one image of the scene, with a resolution of 512
x 384. Fig. 2 shows two of the captured images. We record
each camera’s FoV parameters, so that the joint entropy and the
corresponding 7y can be estimated using EDM. We also per-
form joint coding on the captured images, and from the resulting
coding rates, we can obtain np.

Experiments on different cluster sizes, coding schemes, and
coding parameters are performed to evaluate the joint coding ef-
ficiency. The cluster size is set to three different values (N = 2,
3, and 4). As for coding schemes, there are many standardized
solutions such as the JPEG/JPEG 2000 and the MPEG/H.26x
series. For joint coding on multiple images, the redundancy
among different images should be removed. The JPEG/JPEG
2000 standards can only reduce the redundancy within a single
image; thus, they are not suitable for use here. We use two
coding schemes of the H.264 standards: the Baseline profile and
the recently developed multi-view coding (MVC) extension.
The H.264 reference softwares JM 8.5 [2] and IMVC 2.5 [3]
are used, respectively. For both coding schemes, we obtain the
coding rates under three quantization steps (QP = 28, 32, and
37). Other key parameters in the coding experiment are listed
in Table L.

In (14), the rates of individual coding are obtained by per-
forming intra coding on each image in the cluster, while the rate
of joint coding are obtained by performing predictive coding
among the images. For predictive coding, the images in the
cluster are coded in a sequential order. We also use the de-
pendency graphs in the EDM algorithm to guide the coding
process. In a dependency graph, each camera is connected with
the camera that is most correlated with it; thus, it is beneficial to
perform predictive coding between cameras that are connected
in the graph. For example, if three cameras have a dependency
graph as C; — (s — (3, for joint coding of the images
{X1, X5, X3}, we take X as the reference image and encode
it first, and then encode X5 based on the prediction of X, and
X3 based on the prediction of X5. The total joint coding rate is
a sum of the coding rates of the three images.

When deploying the cameras around a scene, we let their lo-
cations and sensing directions be pairwisely symmetric with re-
spect to the center of the scene. Consequently, we can have sev-

eral (at least two) groups of cameras that lead to the same esti-
mated joint coding efficiency (7 ), according to our spatial cor-
relation model and the EDM algorithm. For each value of 7y,
we perform joint coding on the corresponding groups of cam-
eras, and take the average value of the resulting actual coding ef-
ficiencies (ng). Comparisons of the corresponding 7y and the
average ng values for the two scenes are given in Figs. 3 and
4. For both scenes, although the actual joint coding efficiency
might be smaller than the estimated joint coding efficiency, the
actual joint coding efficiency increases as the estimated joint
coding efficiency increases.

As shown in Figs. 3 and 4, for the same coding scheme, the
value of 7 increases as the quantization step increases: as larger
quantization steps result in more distortion, they may have more
potential bit savings for joint coding. In particular, compared to
the indoor scene “Tables”, the outdoor scene ‘“Trees” contains
more details such as the textures in the tree leafs and the grass
fields. Therefore, the coding performance of the outdoor scene
is more sensitive to the extent of quantization. As shown in the
figures, the results for the outdoor scene have more deviation
when the quantization step varies. The H.264 MVC extension
is more advanced than the H.264 Baseline profile, and our ex-
periments also show that the MVC extension always produces
lower bit rates under the same coding parameters. However, the
joint coding efficiency of the MVC extension is not necessarily
larger than that of the Baseline profile. This is because the MVC
extension results in smaller denominators in (14) than the Base-
line profile.

In general, the actual joint coding efficiency is proportional
to the estimated joint coding efficiency, and such feature is in-
dependent of cluster sizes, coding methods, and levels of dis-
tortion. Therefore, the EDM scheme can effectively predict the
joint coding performances for different sets of cameras for typ-
ical applications of wireless multimedia sensor networks.

B. Compression Performance of DMCP

We now study the compression performance of DMCP in
terms of clustered coding efficiency, which has the form similar
to (13), except that the joint entropy in the entire network is
equal to the total entropy produced in the entire network after
DMCEP is performed. We consider a network with camera
sensor nodes uniformly deployed in a 100 x 100 region. We
vary the network size n and sensing radius R, and measure the
cluster coding efficiency in Fig. 5. We observe that the DMCP
incurs up to 10%-23% coding rate reduction in WMSNs.
The increase in the clustered coding efficiency under larger
sensing radius can be attributed to the following: larger sensing
radius leads to higher probability of two adjacent nodes having
overlapped FoVs, thus inducing more visual redundancy in the
network. The DMCP ensures that these increased redundancy
can be effectively identified and removed, thus giving a better
compression performance. We also observe that the increase
in the number of nodes does not impact the coding efficiency
significantly, and thus, the DMCP provides good compression
scalability.

We now study the impact of sensing direction V and offset
angle a on the compression performance of DMCP. The devi-
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Fig.5. Compression performance versus network size n and sensing radius R.

ation in the sensing directions of multiple camera sensors di-
rectly affects the similarity among their retrieved images. For
a group of sensors with similar sensing directions, there is high
probability that they may capture the similar visual content, thus
leading to more redundancy in the network. The DMCP ensures
that the sensor nodes with similar directions are grouped to-
gether, aiming to reduce the redundancy to the maximum extent.
Fig. 6 depicts the coding efficiency of DMCP under changing
sensing direction patterns. Here, each sensor node is randomly
assigned a sensing direction within a degree region, and wider
region leads to larger direction deviation. We observe that a sub-
stantial coding efficiency (10%—15%) is achieved even in the
worst scenario, e.g., each sensor randomly selects a direction
within a region of 0°-360°, while the optimal coding scenario
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Fig. 6. Compression performance versus sensing direction V' and offset
angle .

(20%—29%) occurs when all the cameras have identical sensing
directions.

Besides sensing direction, offset angle also has significant im-
pact on compression efficiency. In Fig. 6, as the offset angle
increases, we observe the elevation in coding efficiency, fol-
lowed by a gradual decrease. This phenomenon is attributed to
the following: a wide offset angle leads to a large FoV. Thus,
there is greater probability that adjacent cameras cover a large
common area. This indicates that more redundancy exists in the
network. Therefore, higher compression performance is achiev-
able by DMCP. When the offset angle is over a threshold, e.g.,
60°-70° in Fig. 6, the increase in offset angle leads to larger size
of nonoverlapped FoVs than overlapped ones, thus incurring a
reduced compression efficiency.
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Fig. 7. Average versus minimum number of CHs covering each node.

We now investigate the decoding reliability of DMCP by ex-
amining the minimum and average number of CHs covering
each camera sensor. As shown in Fig. 7, the minimum number
of CHs for each sensor is 2. Meanwhile, we observe that the
average number of CHs covering each node exceeds 2. This in-
dicates that some camera sensors are included in more than 2
coding clusters, thus providing additional decoding robustness
at data sink. In addition, low variance in the number of CHs is
shown in Fig. 7, which proves the fairness of DMCP in terms of
coverage performance.

We next compare DMCP to the hybrid energy-efficient
distributed clustering (HEED) protocol [21] and its modified
version MHEED. HEED is a well-known clustering protocol
that is specially designed for wireless sensor networks that deal
with scalar data. This protocol constructs a hierarchical network
architecture by two phases: CH selection and cluster member
assignment. In the first phase, sensor nodes are selected as
CHs probabilistically. More specifically, each node is given a
initial probability p (i.e., 0.05 in [21]) with which it becomes
a CH. In the first iteration, each sensor uniformly draws a
value between 0 and 1 and compares this value with the initial
probability. If this value is less than p, the sensor becomes a
CH and all its neighbors are covered. After this iteration, many
sensors may still be uncovered since the initial probability
(i.e., 0.05) is very small. Therefore, in each of the following
iterations, every sensor doubles p and with this probability
the uncovered sensors become new CHs. When p reaches 1,
the first phase completes. In the second phase, each sensor is
assigned to the closest CH as its cluster member. Different from
DMCP, HEED protocol is a compression-unaware approach.
To fairly compare DMCP with HEED, we design a modified
HEED (MHEED) by incorporating the proposed EDM scheme.
Specifically, MHEED uses the same procedure as HEED for
the CH selection phase. In the second phase, we use the average
cluster entropy, instead of node proximity to the CHs, as the
metric to associate sensors with CHs. That is, each sensor joins
the cluster with the minimum average entropy, a ratio of the
estimated joint entropy of the cameras covered by a CH to the
number of cameras it covers.

In Figs. 8 and 9, we measure the coding efficiency of HEED
and MHEED, respectively, and evaluate the coding efficiency
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Fig. 8. Coding efficiency enhancement of DMCP compared with HEED.
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enhancement of DMCP, compared with HEED and MHEED,
varying the network size n and sensing radius R. Since DMCP
exploits the inherent correlation structure of multiple cameras,
it is expected that DMCP can achieve higher coding efficiency
by finely identifying and properly selecting a set of clusters
that leads to higher compression performance. Accordingly,
as shown in Figs. 8 and 9, DMCP achieves 28%-50% and
20%-40% enhancement, compared with the coding efficiency
of HEED and MHEED, respectively. Meanwhile, in Figs. 8
and 9, we observe that higher enhancement is achieved under
smaller network size (i.e., smaller camera density because of
the fixed deployment area). This phenomenon is attributed to
the fact that smaller camera density leads to higher variability
of the joint entropy of different clusters. In this case, the
visual correlation-based strategy, DMCP, has more evident
advantage over compression-unoriented approaches like HEED
and MHEED. Moreover, we observe that less enhancement is
achieved in Fig. 9 than in Fig. 8. This implies that MHEED
achieves higher coding efficiency than HEED. This is as ex-
pected because MHEED uses the average entropy as the metric
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in selecting CHs, which is superior to just selecting the closest
CH, because the average entropy of a node is a measure of the
expected coding performance if this node is selected as CH.
It is also worth noticing that in Fig. 9, the enhancement under
different sensing radius settings is comparable, which indicates
MHEED is less sensitive to the changing sensing radius than
HEED because MHEED partially exploits the visual correlation
information in clustering procedures.

We now investigate the reliability of HEED and MHEED by
examining the percentage of 2-covered cameras, i.e., the cam-
eras that are covered by more than two clusters. As shown in
Fig. 10, the percentage of 2-covered cameras under HEED and
MHEED is around 30%, comparing with 100% under DMCP.
This implies that DMCP establishes a more robust coding hier-
archy than HEED and MHEED. Meanwhile, we also observe a
slight elevation in the percentage of 2-covered cameras under
HEED and MHEED as the network size or node density in-
creases. This is due to the fact that higher node density gives
rise to more 2-covered cameras. This could further increase the
percentage of cameras covered by more than two clusters in the
network.

VI. CONCLUSIONS

In this paper, we provide an information theoretic data com-
pressing framework for WMSNs with an objective to maxi-
mize the global compression gain with enhanced decoding re-
liability. In particular, an EDM scheme is developed to predict
the compression efficiency for an arbitrary coding cluster con-
taining multiple correlated cameras. This method is only related
to the camera settings, and therefore independent of any specific
image types and coding algorithms. Using the results of EDM,
we then propose DMCP to select a set of coding clusters with
minimum total entropy in a fully distributive manner, such that
each camera sensor is covered by at least two coding clusters.
The approximation factor of DMCP is also investigated. Our
evaluation results show that the EDM can effectively predict the
coding rates produced by practical coding standards, while the
data framework yields up to 10%—23% rate reduction compared
with the conventional independent coding.
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APPENDIX

Algorithm 4: Greedy Coding Cluster Selection Algorithm

DC «—0,and £’ — E

2)Foreach S € S, z(S) < 0.

3) while £/ # () do

4) s+« argminyxes H(X)/|X N E|, and z(s) « 1.
5) C«—CUs,andS « S\ s.

6) B —FE\{eesnk:) g qx(S)>25¢€C}
7) end while
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